On the opposite, in Maier-Saupe's analysis, steric effects are neglected :

 $\Sigma_1 = 0.$

The relative weight x of Σ_1 in g(P,T) for the case of PAA can be estimated from the latent heat at the transition :

$$\Delta H = T \Delta \Sigma = T \frac{\partial(\mu_N - \mu_I)}{\partial T} = \frac{1}{2} S_c^2 g_c \left(1 - \underbrace{\frac{T_c}{g_c} \left(\frac{\partial g}{\partial T} \right)_c}_{x} \right).$$

Clearly, x is a measure of the entropic contribution to the couplings :

for hard rods, $g = T\Sigma_1(S)$ whence $\partial g/\partial T = g/T$ and x = 1; for Maier and Saupe, g is independent of T (at constant volume) and x = 0.

The actual value of x is:

0

$$x = 1 - \frac{2\Delta H}{S_c^2 g_c} = 1 - \frac{2\Delta H}{4.54 S_c^2 T_c}.$$

Unfortunately, the dispersion of the existing data on ΔH (or alternatively dT_c/dP) does not permit a precise determination of x. Taking the data on $\Delta H^{(14)}$, and a value of S coherent with the theoretical calculation of $(T/g)_c \cdot ((T/g)_c = 4.54, S_c = 0.43)$, we get:

 $x \simeq 0.5.$

This suggests that the contributions of Van der Vaals attractions and entropic repulsions (excluded volume effects) to the intermolecular orientational couplings $\frac{1}{2}g(P,T)S^2$ are on the same order of magnitude.

5. Conclusions

(a) Experimentally S_c is independent of P on a rather broad range of pressure.

(b) This is compatible with all mean field models where the molecular interaction energy is proportional to S^2 ; thus our experiment does not give a very detailed check on the nature of the couplings. They might be temperature independent, as in Maier-Saupe's theory (Van der Waals attractions), or temperature dependent, as in the Onsager's calculation (excluded volume effects). In

207

208 MOLECULAR CRYSTALS AND LIQUID CRYSTALS

fact, we probably have a superposition of both effects; the relative weights of the two contributions can be estimated by certain other measurements, such as the latent heat of the transition. A rough estimate along these lines shows that the two effects are on the same order of magnitude.

(c) We are unable to devise a similar theory for the solid-nematic transition, because the order parameter for this transition is more complex: it depends on S, but also on the translational order of the molecules.

Acknowledgements

We thank Professor P. G. de Gennes for many essential suggestions and advices regarding this work, G. Malfait and G. Delplanque for their decisive technical assistance.

REFERENCES

- This measurement was suggested by Papoular—M. Papoular, Solid State Commun. 7, 1691 (1963).
- 2. The subscript c refers to the clearing (nematic-isotropic transition), and M to the melting point (solid-nematic transition).
- 3. Malfait, G. and Jerome, D., Rev. Phys. Appl. 4, 467 (1969).
- 4. Bundy, F. P., J. Appl. Phys. 32, 483 (1961).
- 5. Beyeler, M., Thesis, Université of Paris (1968).
- 6. It could be argued that, at high pressures, there is a certain amount of Helium gas dissolved in our PAA sample; the effect of this dissolution would be to lower the values of the slopes dT/dP. The magnitude of this effect is rather uneasy to estimate; it is presumably smaller with rare gases than with other organic fluids, but larger than with mercury.⁽⁷⁻⁹⁾
- 7. Hulett, G. A., Z. Physik. Chem., 28, 629 (1899).
- Puschin, A. and Grebenschtschikow, W., Z. Physik. Chem. (Leipzig) 124, 270 (1926).
- 9. Robberecht, J., Bull. Soc. Chim. Belge 47, 597 (1936).
- 10. These results have been obtained in a previous experiment with a different sample and by another calibration of the thermocouple.
- 11. McLaughlin, E., Shakespeare, A. and Ubbelohde, R., Trans. Faraday Soc. 60, 25 (1964).
- Schenck, R., Kristallinishe Flussigkeiten und Flussige Kristall (Englemann, Leipzig, 1905).
- 13. Kreutzer, C. and Kast, W., Naturwiss 25, 233 (1937).
- 14. Arnold, H., Z. Phys. Chem. (DDR) 226, 146 (1964).
- 15. Chistyakov, I. G., Soviet Phys. Uspekhi 9, 551 (1967).